Abstract
Polymer nanoparticles (NPs) are promising systems for the delivery of protein drugs, as they enhance circulation half‐life, reduce degradation, and increase selectivity of the encapsulated agent. Among the different methods for the preparation of protein‐loaded NPs, ionotropic gelation—which exploits cross‐linking between charged groups in the polymer and counterions in the protein solution—has been extensively investigated for chitosan NPs. The present study aims at exploring the possibility to apply the method to prepare BSA‐loaded polyurethane NPs. A poly(ε‐caprolactone)/poly(ethyleneglicol)‐based polyurethane bearing tert‐butyloxycarbonyl‐protected amino groups was synthesized by a two‐step synthesis procedure. Amino functionalities were exposed under acidic conditions, as confirmed by ninhydrin assay, and then exploited to obtain ionic cross‐linking with sodium tripolyphosphate counterions. The effect of polymer and sodium tripolyphosphate concentration on particles size and BSA encapsulation has been investigated, showing that the PUR concentration plays a major role. Small particles, at 300 nm, with high BSA loading (90%) have been obtained. Sustained BSA release and low burst effect (20%) have been observed, indicating good interaction between the protein and the polymer matrix. The study highlights the possibility of introducing alternative polymers to improve loading and release of proteins from NPs obtained through the ionotropic gelation method.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.