Abstract

A novel type of ionic covalent organic framework (ICOF), which contains sp(3) hybridized boron anionic centers and tunable countercations, was constructed by formation of spiroborate linkages. These ICOFs exhibit high BET surface areas up to 1259 m(2) g(-1) and adsorb a significant amount of H2 (up to 3.11 wt %, 77 K, 1 bar) and CH4 (up to 4.62 wt %, 273 K, 1 bar). Importantly, the materials show good thermal stabilities and excellent resistance to hydrolysis, remaining nearly intact when immersed in water or basic solution for two days. The presence of permanently immobilized ion centers in ICOFs enables the transportation of lithium ions with room-temperature lithium-ion conductivity of 3.05×10(-5) S cm(-1) and an average Li(+) transference number value of 0.80±0.02. Our approach thus provides a convenient route to highly stable COFs with ionic linkages, which can potentially serve as absorbents for alternative energy sources such as H2, CH4, and also as solid lithium electrolytes/separators for the next-generation lithium batteries.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call