Abstract

AbstractFor the fabrication of high‐energy and high‐power all‐solid‐state batteries (ASSBs), easily synthesizable solid electrolytes are needed, which enable fast ion transport inside the composite cathode as well as good contacts between cathode active material and solid electrolyte particles. Regarding the latter, the size ratio of the particles inside the composite cathode has to be optimized. Here, we use a wet ball milling process for the synthesis of agyrodite‐type Li5.5PS4.5Cl1.5 solid electrolyte particles and study the influence of milling time on particle size and ionic conductivity. With longer milling time, both the solid electrolyte particle size and the ionic conductivity decrease, which exert an opposing influence on the cathode performance. We show that a milling time of approximately 2 h leads to an optimum cathode performance, as this time is sufficient for a favorable particle size ratio, while a strong drop of the ionic conductivity of Li5.5PS4.5Cl1.5 is avoided.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.