Abstract

We have investigated the temperature- and frequency-dependent ionic conductivity in (Li 0.67 − x Na 0.33 Rb x ) 2B 4O 7 (LNRBO) glasses with x = 0, 0.07, 0.2, 0.33, 0.47, and 0.6. The mixed alkali effect of the ternary mixed alkali system LNRBO is compared with that of the binary mixed alkali systems (Li 1 − x Na x ) 2B 4O 7 (LNBO), (Li 1 − x Rb x ) 2B 4O 7 (LRBO) and the single alkali glass Rb 2B 4O 7 (RBO). From the results of the dc conductivity and dc activation energy, we observe that the LNRBO system exhibits the combined characteristic of binary mixed alkali systems LNBO and LRBO. It is found that the power-law exponent n for binary alkali glass is the same as that for ternary alkali glass but it is lower than that for single alkali glass. This indicates that the dimensionality of conducting pathway in the mixed alkali glasses of LNBO, LRBO and LNRBO is lower than that in the single alkali RBO. We discuss the concentration dependence of the dc conductivity and dc activation energy in the framework of the bond valence technique to reverse Monte Carlo produced structural model [Phys. Rev. Lett. 90, 155507 (2003)].

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.