Abstract

Poly(vinylidene fluoride-hexafluropropylene) (PVDF-HFP) and poly(methyl methacrylate) (PMMA)-based gel polymer electrolytes (GPEs) comprising propylene carbonate and diethyl carbonate mixed plasticizer with variation of lithium perchlorate (LiClO4) salt concentrations have been prepared using a solvent casting technique. Structural characterization has been carried out using XRD wherein diffraction pattern reveals the amorphous nature of sample up to 7.5[Formula: see text]wt.% salt and complexation of polymers and salt have been studied by FTIR analysis. Surface morphology of the samples has been studied using scanning electron microscope. Electrochemical impedance spectroscopy in the temperature range 303–363[Formula: see text]K has been carried out for electrical conductivity. The maximum room temperature conductivity of 2.83[Formula: see text][Formula: see text]S cm[Formula: see text] has been observed for the GPE incorporating 7.5[Formula: see text]wt.% LiClO4. The temperature dependence of ionic conductivity obeys the Arrhenius relation. The increase in ionic conductivity with change in temperatures and salt content is observed. Transport number measurement is carried out by Wagner’s DC polarization method. Loss tangent (tan [Formula: see text]) and imaginary part of modulus ([Formula: see text]) corresponding to dielectric relaxation and conductivity relaxation respectively show faster relaxation process with increasing salt content up to optimum value of 7.5[Formula: see text]wt.% LiClO4. The modulus ([Formula: see text]) shows that the conductivity relaxation is of non-Debye type (broader than Debye peak).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.