Abstract

Three commercial elastomers, Hydrin C, Hydrin H and Hydrin T, which contain ethylene oxide and epichlorohydrin repeat units, have been investigated as polymer electrolytes in contact with lithium electrode. The influence of polyethylene glycol and fine particles of zeolite on ionic conductivity of Hydrin-LiBF4 electrolytes and the exchange current density of the lithium electrode reaction has been studied by using impedance spectroscopy and cyclic voltammetry. The specific conductivity of the elastomeric electrolyte is about 10−5 S cm−1 at room temperature when polyethylene glycol is present. But the mechanical stability of the film is less. The addition of zeolite particles to the elastomers also improves the specific conductivity. When present in low concentrations, the zeolite particles show catalytic effect on the electrochemical reaction at lithium electrode at ambient temperature. The lithium electrode reaction is reversible and the electrolyte possesses good electrochemical stability.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.