Abstract
Ionically-conductive hydrogels are attracting increasing interest as skin-like sensors, however, the fabrication of ion-conductive hydrogels with excellent mechanical properties, high conductivity, self-adhesion and anti-freezing ability for high-performance sensors remains a challenge. Herein, a highly ion-conductive hydrogel is prepared by introducing LiCl into polyacrylamide/hydroxypropyl methyl cellulose (PAM/HPMC) composite hydrogel. The introduction of LiCl simultaneously endows the PAM/HPMC/LiCl hydrogel with outstanding stretchability (1453 %), high tensile strength (135 kPa), skin-like elasticity (9.18 kPa), high conductivity (7.85 S/m), good adhesiveness and wide operating temperature range. Impressively, this ion-conductive hydrogel can be utilized in skin-like sensor, which achieves high strain sensitivity (GF = 11.19) with wide sensing ranges (up to 600 %), and excellent endurance over 250 consecutive stretching. As a result, the wearable sensor assembled from the hydrogels can be used to detect complex human activities with high stability even at −40 °C. This work promotes the development of ion-conductive hydrogels with broad operating temperature in advanced sensory platform.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Biological Macromolecules
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.