Abstract

Conductive hydrogels have attracted tremendous attention due to their excellent softness and stretchability as wearable strain sensing devices. However, most of hydrogel-based strain sensors suffered from poor self-recoverability and fatigue resistance, resulting in significant decrease of strain sensitivity after recycling. Here, a soft and flexible wearable strain sensor is prepared by using an ionic conductive hydrogel with latex particles as physical cross-linking centers. The dynamic physical cross-linking structure can effectively dissipate energy through disruption and reconstruction of molecular segments, thereby imparting excellent stretchability, self-recoverability and fatigue resistance. In addition, the hydrogel exhibits excellent strain-sensitive resistance changes, which enables it to be assembled as a wearable sensor to monitor human motions. As a result, the hydrogel strain sensor can provide precise feedback for a wide range of human activities, including large-scale joint bending and tiny phonating. Therefore, the tough ionic conductive hydrogel would be widely applied in electronic skin, medical monitoring and artificial intelligence.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.