Abstract

Because of the layered structure of vanadium pentoxide films (V2O5), approved by XRD measurement, sensitized from different hydrated V2O5.nH2O sols, demonstrated anisotropic conductivities in current voltage (I-V) measurement. Conductivity values, originated from electronic and ionic conductions, differed provided that measurements were performed in a direction parallel to the ribbons rather than perpendicular to them. The overall electrical conductivity of V2O5nH2O sols mainly depended on the hydration state n and the amount of reduced V4+ ions in which n was determined around 4-6 [1] from the basal distance (17.6 Å) through XRD measurement while V4+ ions were determined through FTIR analysis. Electronic conduction prevailed in dehydrated V2O50.5H2O sols whereas non-stoichiometric vanadium pentoxide was a mixed-valence compound and its electronic properties arised from electron hopping between V4+ and V5+ ions so-called “small polaron model”. Indeed, reduction/oxidation peaks in lithium (Li+) intercalation by cyclic voltammograms (CV) indicated the V4+ and V5+ ions in V2O5 sols. Temperature dependent I-V analysis showed Arheniuss type activation energy, EA, and located in between 0.3-0.5 eV; proposing ionic conduction rather than electronic conduction, specifically proton diffusion in V2O5 film. Indeed, hydration state greater than 0.5 predicted ionic conduction [1].

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call