Abstract
The ionic and electronic conductivities of samaria doped ceria electrolytes, Ce0.85Sm0.15O1.925−δ, with nanometric grain size have been evaluated. Nanostructured bulk specimens were obtained using a combination of high specific-surface-area starting materials and suitable sintering profiles under conventional, pressureless conditions. Bulk specimens with relatively high density (≥92% of theoretical density) and low medium grain size (as small as 33 nm) were achieved. Electrical A.C. impedance spectra were recorded over wide temperature (150 to 650°C) and oxygen partial pressure ranges (0.21 to 10−31 atm). Under all measurement conditions the total conductivity decreased monotonically with decreasing grain size. In both the electrolytic and mixed conducting regimes this behavior is attributed to the high number density of high resistance grain boundaries. The results suggest a possible variation in effective grain boundary width with grain size, as well as a possible variation in specific grain boundary resistance with decreasing oxygen partial pressure. No evidence appears for either enhanced reducibility or enhanced electronic conductivity upon nanostructuring.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.