Abstract

Bioskin is a natural polymer produced by Acetobacter xylinum and several yeasts in culture. It contains glucosamine and N-acetyl galactosamine which promote ionic adsorption of catalase at the adequate pH value. High values of ionic strength are required to enzyme desorption. Adsorption of catalase on bioskin fibers has been visualized by scanning electron microscopy associated to a dispersion X-ray analyzer. At low enzyme density, the affinity of the immobilized catalase for hydrogen peroxide was 30% lower than that of the free enzyme. This affinity decreased dramatically at higher density of immobilized enzyme and could not be increased by agitation of the enzyme reaction mixture. Immobilized catalase retains about 70% of its initial activity after 16 d storage, whereas soluble enzyme is completely inactivated after 3 d at room temperature. The haeme group of catalase is not protected after immobilization since it is accessible to both EDTA and phloroglucinol, chelating agents which inactivate catalase by removing the iron atom from the haeme group.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call