Abstract

Membrane technology lies at the heart of many industrial gas separation processes and applications. Molecular sieving membranes that break the Robeson limit are desirable for energy-efficient gas separation. Herein, we report a facile strategy of directly integrating ionic liquids (ILs) into porous membranes. Particularly, the ILs form an ultra-thin layer on the carbon molecular sieve (CMS) membranes rather than penetrating into the pores, acting as a smart gate for gas entry to boost the selectivity. The hybrid membrane exhibits CO2 permeability >600 barrer and enhanced CO2/N2 selectivity >50, which surpasses the Robeson limit and shows potential in CO2/N2 separation process. Molecular dynamics simulations confirm the gating effect of the IL layer of molecular thickness. This work demonstrates a universal strategy to improve CMS membrane performance by creating an IL-membrane interface and tuning the ion-pore interaction.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.