Abstract

This work aimed to produce improved polymer coatings for the modification of thin mercury film electrodes (TMFEs). The goal is to obtain sensitive, reproducible, mechanically stable and antifouling devices suitable for the determination of trace metal cations in complex media. Therefore, novel mixed coatings of two sulfonated cation-exchange polymers of dissimilar characteristics-Nafion (NA) and poly(sodium 4-styrenesulfonate) (PSS)-were produced by solvent evaporation onto glassy carbon electrodes. The effect of the mass ratio (NA:PSS) on the film morphology was studied by scanning electron microscopy, revealing the formation of biphasic polymer systems, where PSS bead-shaped clusters appeared randomly dispersed into a uniform and compact NA environment. The permselectivity/ion-exchange features of the mixed films onto glassy carbon were evaluated using cathecol, urate, and dopamine. To allow trace metal analysis, thin mercury films were plated through the NA/PSS coatings, being the reproducibility and ion-exchange features of the mixed coatings-TMFE evaluated using lead ions. The best NA/PSS coating was found for the mass ratio of 5.3. Analytical performance of the NA/PSS-TMFE yielded a detection limit of 5.5 nM (3sigma), and the application of this modified electrode to an untreated polluted estuarine water sample produced significant improvements in the quality of the signal compared with that for a bare TMFE.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.