Abstract

The cation-exchange property of oxidatively treated carbon nanotubes (CNTs) is newly reported. Single-wall carbon nanotubes (SWNTs), which were oxidatively treated, were immobilized on a glassy carbon surface and, on this CNT-modified electrode, Cu(II) ions were spontaneously adsorbed and their redox waves electrochemically measured. It is suggested that the adsorption of the cationic Cu(II) ions occurs by their electrostatic interaction with the negatively charged carboxylic anions on the CNTs after the ion-exchange with protons. The surface coverage of the adsorbed Cu(II) ions depending on the dipping time, the amount of immobilized CNTs, and the Cu(II) concentration was estimated from the electrochemical chronocoulometric measurements. The effect of the ionic strength on the adsorption of the Cu(II) ions was investigated and the adsorption strengths of various alkali metal cations and protons were compared. It is hoped that this new cation-exchange property of CNT-modified electrodes may extend their range of electrochemical applications.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.