Abstract
We investigate the effect of the plume/interplume lane (PIPL) structure of the solar polar coronal hole (PCH) on the propagation characteristics of ion-cyclotron waves (ICW). The gradients of physical parameters determined by SOHO and TRACE satellites both parallel and perpendicular to the magnetic field are considered with the aim of determining how the efficiency of the ICR process varies along the PIPL structure of PCH. We construct a model based on the kinetic theory by using quasi-linear approximation. We solve the Vlasov equation for O VI ions and obtain the dispersion relation of ICW. The resonance process in the interplume lanes is much more effective than in the plumes, agreeing with the observations which show the source of fast solar wind is interplume lanes. The solution of the Vlasov equation in PIPL structure of PCH, the physical parameters of which display gradients along and perpendicular direction to the external magnetic field, is thus obtained in a more general form than the previous investigations.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.