Abstract

Current-driven electrostatic ion-cyclotron instability has so far been studied for Maxwellian plasma with isotropic and anisotropic temperatures. Since satellite-measured particle velocity distributions in space are often better modeled by the generalized Lorentzian (kappa) distributions and since temperature anisotropy is quite common in space plasmas, theoretical analysis of the current-driven, electrostatic ion-cyclotron instability is carried out in this paper for electron-proton plasma with anisotropic temperatures, where the particle parallel velocity distributions are modeled by kappa distributions and the perpendicular velocity distributions are modeled by Maxwellian distributions. Stability properties of the excited ion cyclotron modes and, in particular, their dependence on electron to ion temperature ratio and ion temperature anisotropy are presented in more detail. For comparison, the corresponding results for bi-Maxwellian plasma are also presented. Although the stability properties of the ion cyclotron modes in the two types of plasmas are qualitatively similar, significant quantitative differences can arise depending on the values of κe and κi. The comparative study is based on the numerical solutions of the respective linear dispersion relations. Quasilinear estimates of the resonant ion heating rates due to ion-cyclotron turbulence in the two types of plasma are also presented for comparison.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.