Abstract

Layers of polynuclear NaOH complexes with aza-crown groups are synthesized using a NaOH solution on porous layers with internal voids of macromolecular hydroxyethylated cyclams on a chemically modified PVC coating that encapsulates the fibers of a cellulose fabric. The porous structure of the layers is studied along with the adsorption of solvent vapors (benzene, hexane) and liquid solvents. The OH− conductivity of layers that act as electrochemical bridges is examined in air and the vapor and liquid phases of the solvent. It is established that the complexes occupy the voids and have a developed system of hydrogen bonds. The pores are filled during adsorption. Molecules of the solvent are connected by the macrocyclic groups of pore walls into a host-guest complex as the structural system of hydrogen bonds changes. It is observed that the motions of OH− ions start at a certain value of potential Eover. An expression describing the dependence of velocity of voltage is obtained: v′ = K1(E − Eover) + K2(E − Eover)2, where K1 is the conductivity constant of a layer and K2 is the constant of transfer acceleration, determined by the structural changes in the layer in a field of moving OH− ions. It is shown that the values of Eover, K1, and K2 depend on the composition of the complex and the nature of solvents.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.