Abstract

Ion-acoustic shock waves and their head-on collision in a dense quantum plasma comprised of electrons, positrons, and ions are studied. The extended Poincaré–Lighthill–Kuo perturbation method is used to derive the Korteweg–de Vries–Burgers equations for shock waves in this plasma. The dissipation is introduced by taking into account the kinematic viscosity among the plasma constituents. The effects of the ratio of positrons to ions unperturbation number density μ, the normalized kinematic viscosity η i 0 , and the quantum Bohm potential H on the interaction and structure of the shock waves are investigated. It is found that there are integrally vertical downward movements for both the colliding shocks after their head-on collision, but there are no shifts of the postcollision trajectories (phase shifts). It is also found that these plasma parameters can significantly influence the collision and properties of the colliding shocks. The results may have relevance in dense astrophysical plasmas (such as neutron stars or white dwarfs) as well as in intense laser-solid density plasma experiments.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.