Abstract
Using a particle-in-cell electrostatic simulation, we examine the conditions that allow low energy ions, like those produced in the Enceladus plume, to be attracted and trapped within the sheaths of negatively-charged dust grains. The conventional wisdom is that all new ions produced in the Enceladus plume are free to get picked up (i.e., accelerated by the local E-field to then undergo vB acceleration). However, we suggest herein that the presence of submicron charged dust in the plume impedes this pickup process since the local grain electric field greatly exceeds the co-rotation E-fields. The simulations demonstrate that cold ions will tend to accelerate toward the negatively charged grains and become part of the ion plasma sheath. These trapped ions will move with the grains, exiting the plume region at the dust speed. We suggest that Cassini's Langmuir probe is measuring the entire ion population (free and trapped ions), while the Cassini magnetometer detects the magnetic perturbations associated with pickup currents from the smaller population of free ions, with this distinction possibly reconciling the ongoing debate in the literature on the ion density in the plume.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.