Abstract

The objective of the study was to establish a solid model of polarized epithelium for human pancreatic ducts, where electrical parameters could be measured as indicators of ion transport. Further, we aimed to determine functional expression of several receptors, in particular, purinergic receptors, and determine their effects on ion transport. Human adenocarcinoma cell line Capan-1 cells were grown on permeable supports and set in Ussing chambers for electrophysiological recordings. Transepithelial voltage (Vte), resistance, and short-circuit currents (Isc) were measured in response to agonists. Secretin, vasoactive intestinal peptide (VIP), acetylcholine, forskolin, ionomycin, adenosine 5'-triphosphate (ATP), uridine 5'-triphosphate (UTP), 3'-O-(4-benzoyl)benzoyl ATP, and adenosine induced lumen negative Vte and Isc. These changes were consistent with anion secretion, as verified in forskolin-stimulated preparations. Extracellular nucleotides, ATP, and UTP, applied from luminal and basolateral sides, caused largest responses: Vte increased up to -5 mV, Isc increased to 20 to 30 μA/cm, and resistance decreased by up to 200 Ω·cm. Transepithelial transport in human pancreatic duct epithelium, Capan-1 cells, is regulated by secretin, VIP, acetylcholine, adenosine, and purinergic P2 receptors; and this human model has a good potential for studies of physiology and pathophysiology of pancreatic duct ion transport.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call