Abstract

Ion transport in electrolytes with nanoscale confinements is of great importance in many fields such as nanofluidics and electrochemical energy devices. The mobility and conductance for ions are often described by the classical Debye-Hückel-Onsager (DHO) theory but this theory fails for ions near dielectric interfaces. We propose a generalized DHO theory by using the Wentzel-Kramers-Brillouin techniques for the solution of the Onsager-Fuoss equation with variable coefficients. The theory allows to quantitatively measure physical quantities of ion transport in nanodevices and is demonstrated to well explain the abnormal increase or decrease of the ionic mobility tuned via the dielectric mismatch. By numerical calculations, our theory unravels the crucial role of the size of confinements and the ionic concentration on the ion transport, and demonstrates that the dielectric polarization can provide a giant enhancement on the conductance of electrolytes in nanodevices. This mechanism provides a practical guide for related nanoscale technologies with controllable transport properties.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.