Abstract

Ionic transport through a charged nanopore at low ion concentration is governed by the surface conductance. Several experiments have reported various power-law relations between the surface conductance and ion concentration, i.e., Gsurf ∝ c0α. However, the physical origin of the varying exponent, α, is not yet clearly understood. By performing extensive coarse-grained Molecular Dynamics simulations for various pore diameters, lengths, and surface charge densities, we observe varying power-law exponents even with a constant surface charge and show that α depends on how electrically "perfect" the nanopore is. Specifically, when the net charge of the solution in the pore is insufficient to ensure electroneutrality, the pore is electrically "imperfect" and such nanopores can exhibit varying α depending on the degree of "imperfectness". We present an ionic conductance theory for electrically "imperfect" nanopores that not only explains the various power-law relationships but also describes most of the experimental data available in the literature.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.