Abstract

We present the design and performance of an in-house built electrospray ionization-mass spectrometry (ESI-MS) interface equipped with an S-lens ion guide. The ion source was designed specifically for our ion beam experiments to investigate the chemical reactivity and deposition of the clusters and nanoparticles. It includes standard ESI-MS interface components, such as nanoelectrospray, ion transfer capillary, and the S-lens. A custom design enables systematic optimization of all relevant factors influencing ion formation and transfer through the interface. By varying the ESI voltage and flow rate, we determined the optimal operating conditions for selected silica emitters. A comparison of the pulled silica emitters with different tip inner diameters reveals that the total ion current is highest for the largest tip, whereas a tip with the smallest diameter exhibited the highest transmission efficiency through the ESI-MS interface. Ion transmission through the transfer capillary is strongly limited by its length, but the loss of ions can be reduced by increasing the capillary voltage and temperature. The S-lens was characterized over a wide range of RF frequencies and amplitudes. Maximum ion current was detected at RF amplitudes greater than 50 V peak-to-peak (p/p) and frequencies above 750 kHz, with a stable ion transmission region of about 20%. A factor of 2.6 increase in total ion current is observed for 650 kHz as RF amplitudes reach 400 V p/p. Higher RF amplitudes also focus the ions into a narrow beam, which mitigates their losses when passing through the ion guide.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call