Abstract

Ten aromatic amines were calculated by Hartree–Fock and Densty Functional Theory using the functional B3LYP and the 6-311++G** basis set in water and 1,2-dichloroethane (1,2-DCE) solvents using the polarized continuum model to simulate the transfer of these aromatic amines between the interface water/1,2-DCE. Actually, electrochemical studies have led to four models to describe the molecule transfer mechanism; however, these mechanisms are not easy to study experimentally. Five models were explored, including the four classic models of molecule transfers and a statistical combination of two of them, called the bi-transfer model. This last model takes structural characteristics of amines at optimized geometry in both solvents, which permits establishment of the electronic energy as a parameter at equilibrium. Finally, we consider that the molecule transfer should include both the neutral and charged amines by using neutral and charged water molecules.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.