Abstract

The large flexibility of the proposed QUASAR facility [Gates et al., Nucl. Fusion 57, 126064 (2017)] is leveraged in order to explore the effect of magnetic shear on adiabatic Ion Temperature Gradient (ITG) turbulence. The QUASAR facility is a reimagining of the National Compact Stellarator Experiment utilizing and expanding upon the already constructed coil set. Recent work using fixed boundary optimization of the LI383 equilibrium (upon which QUASAR is based) has suggested possible improvements to ITG turbulence [Mynick et al., Plasma Phys. Controlled Fusion 56, 094001 (2014)]. In this work, a different approach is taken, wherein a series of self-consistent free boundary VMEC equilibria are developed for QUASAR. These equilibria assume temperature and density profiles consistent with 2% beta and ohmic current drive. In each configuration, the toroidal field coils are energized to different values and the STELLOPT code is used to vary the modular coil current and net toroidal current. The edge value of rotational transform is targeted in the optimization, producing a magnetic shear scan. All these configurations share similar neoclassical transport levels, while nonlinear GENE flux tube simulations show up to a factor of four change in adiabatic ITG turbulence at various radii. Comparisons of proxy functions and linear flux tube runs are also made. This work highlights the capability of the QUASAR experiment as a tool to explore transport in 3D magnetic fields and the possibility of the further improvements to stellarators through optimization.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.