Abstract

Ion-specific effects on aqueous solvation of monovalent counter ions, Na , K , Cl , and Br , and two model polyelectrolytes (PEs), poly(styrene sulfonate) (PSS) and poly(diallyldimethylammonium) (PDADMA) were here studied with ab initio molecular dynamics (AIMD) and classical molecular dynamics (MD) simulations based on the OPLS-aa force-field which is an empirical fixed point-charge force-field. Ion-specific binding to the PE charge groups was also characterized. Both computational methods predict similar response for the solvation of the PEs but differ notably in description of ion solvation. Notably, AIMD captures the experimentally observed differences in Cl and Br anion solvation and binding with the PEs, while the classical MD simulations fail to differentiate the ion species response. Furthermore, the findings show that combining AIMD with the computationally less costly classical MD simulations allows benefiting from both the increased accuracy and statistics reach.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.