Abstract

DNA origami nanostructures are a versatile tool that can be used to arrange functionalities with high local control to study molecular processes at a single-molecule level. Here, we demonstrate that DNA origami substrates can be used to suppress the formation of specific guanine (G) quadruplex structures from telomeric DNA. The folding of telomeres into G-quadruplex structures in the presence of monovalent cations (e.g. Na(+) and K(+)) is currently used for the detection of K(+) ions, however, with insufficient selectivity towards Na(+). By means of FRET between two suitable dyes attached to the 3'- and 5'-ends of telomeric DNA we demonstrate that the formation of G-quadruplexes on DNA origami templates in the presence of sodium ions is suppressed due to steric hindrance. Hence, telomeric DNA attached to DNA origami structures represents a highly sensitive and selective detection tool for potassium ions even in the presence of high concentrations of sodium ions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.