Abstract

Different ion and pH regulation mechanisms have been detected in the three main life stages of Trypanosoma cruzi: epimastigote, metacyclic trypomastigote and amastigote. Treatment with amiloride showed that the Na(+)/H(+) exchanger participated in all three forms. The Na(+)/K(+) ATPase exchanger appeared to be more active in the epimastigote than in the other forms. V-H(+)-ATPase inhibitors revealed the activity of this regulatory mechanism in the amastigote and epimastigote forms, while treatment with oligomycin only affected the amastigotes. The HCO(-)(3)/Cl(-) exchanger was found in all stages as well as in the intracellular pH-regulatory mechanism after abrupt basification. We deduce that ion regulation in T. cruzi is a complex process and depends upon the precise stage of the cell cycle of the parasite. It would seem to be an important mechanism, allowing the parasite to adapt to the changing environmental conditions within which it develops.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.