Abstract

To gain more insight into fundamental aspects of the etching behavior of Hf-based high-k materials in plasma etch reactors, HfO2 films were etched in a multiple-beam setup consisting of a low energy Ar+ ion beam and a XeF2 radical beam. The etch rate and etch products were monitored by real-time ellipsometry and mass spectrometry, respectively. Although etching of HfO2 in XeF2/Ar+ chemistry is mainly a physical effect, an unambiguous proof of the ion-radical synergistic effect for the etching of HfO2 is presented. The etch yield for 400 eV Ar+ ions at a substrate temperature of 300 °C was 0.3 atoms/ion for Ar+ sputtering and increased to 2 atoms/ion when XeF2 was also supplied. The etch yield proved to follow the common square root of ion energy dependence both for pure sputtering and radical enhanced etching, with a threshold energy at room temperature of 69±17 eV for Ar+ ions and 54±14 eV for Ar+ ions with XeF2.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.