Abstract

The gigaohm seal technique was used to study ion permeation through acetylcholine-activated channels in cell-attached patches of the extrajunctional membrane of chronically denervated, enzyme-treated cells from the sartorius muscle of the toad Bufo marinus. The most frequently occurring channel type (greater than 95% of channel openings), provisionally classified as 'extrajunctional,' had a chord conductance of approximately 25 pS under normal conditions (-70 mV, 11 degrees C, Normal Toad Ringer's). The less frequently observed channel type (less than 5% of channel openings), classified as a 'junctional' type, had a conductance of 35 pS under the same conditions, and a similar null potential. In many patches, a small percentage (usually less than 2%) of openings of the extrajunctional channel displayed a lower conductance state. The shape of the I-V curves obtained for the extrajunctional channel depended on the predominant extracellular cation. For Cs and K, the I-V curves were essentially linear over the voltage range +50 to -150 mV across the patch, suggesting that the potential independent component of the energy profile within the channel was symmetrical. For Li, the I-V curve was very nonlinear, displaying a significant sublinearity at hyperpolarized potentials. Both an electrodiffusion and a symmetrical uniform four-barrier, three-site rate-theory model provided reasonable fits to the data, whereas symmetrical two-barrier, single-site rate-theory models did not. For the alkali cations examined, the relative permeability sequence was PCs greater than PK greater than PNa greater than PLi--a "proportional" selectivity sequence. This was different from the single channel conductance sequence which was found to be gamma K greater than gamma Cs greater than gamma Na greater than gamma Li implying that ions do not move independently through the channel. The relative binding constant sequence for the channel sites was found to be a "polarizability" sequence, i.e., KLi greater than KCs greater than KNa greater than KK. There was an inverse relationship between the relative binding constant and the relative mobility for the cations examined. Under conditions when the single-channel conductance was relatively high, the conductance at depolarized potentials was lower than that predicted by both electrodiffusion and rate theory models, suggesting that there was a rate-limiting access step for ions, from the intracellular compartment into the channel.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call