Abstract

Neurotransmitters (NTs) play an important role in neural communication, regulating a variety of functions such as motivation, learning, memory, and muscle contraction. Their intermolecular interactions in biological media are an important factor affecting their biological activity. However, the available information on the features of these interactions is scarce and contradictory, especially, in an estimation of possible ion binding. In this paper, we present the results of a study for two well-known NTs, acetylcholine (ACh) and glutamate (Glu), with relation to the NT-inorganic ion and the NT-NT binding in a water environment. The features of NT pairing are investigated in aqueous AChCl and NaGlu solutions over a wide concentration range using the integral equation method in 1D- and 3D- reference interaction site model (RISM) approaches. The data for ACh are given for its two bioactive TG (trans, gauche) and TT (trans, trans) conformers. As was found, for both NTs, the results indicate the NT-inorganic counterion contact pair to be the predominant associate type in the concentrated solutions. In this case, the counterions occupy the vacated "water" space in the hydration shell of the onium moiety (ACh) or carboxylate groups (Glu). For ACh, the "unfolded" TT conformer demonstrates a slightly greater possibility for counterion pairing in comparison with the "folded" TG conformer. For Glu, the probability of its binding with a counterion is slightly stronger for the "side-chain" carboxylate group than for the "backbone" group. The obtained results also revealed an insignificant probability of Glu--Glu- pairing. Namely, the RISM data indicate Glu--Glu- binding by NH3+-COO- interactions. A link between the ion binding of NTs and their biological activity is discussed. This contribution adds new knowledge to our understanding of the interactions between the NTs and their molecular environment, providing further insights into the behavior of these compounds in biological media.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.