Abstract

The counterions of polyoxometalates (POMs) impact properties and applications of this growing class of inorganic clusters. Here, we used density functional theory (DFT) to elucidate the impact of fully hydrated alkali metal cations on the geometry, electronic structure, and chemical properties of the polyoxotungstate anion [PW12O40]3-. The calculations show that the HOMO of the free anion [PW12O40]3- is a linear combination of the 2p AOs of the bridging oxygens, and the first few LUMOs are the 5d orbitals of the tungsten atoms. The S0→ S1 electron excitation, near 3 eV, is associated with the O(2p) → W(5d) transition. Anion/cation complexation leads to formation of [PW12O40]3-[M+(H2O)16]3 ion-pair complexes, where with the increase of atomic number of M, the M+(H2O)16 cluster releases several water molecules and interacts strongly with the polyoxometalate anion. For M = Li, Na and K, [PW12O40]3-[M+(H2O)16]3 is characterized as a "hydrated" ion-pair complex. However, for M = Rb and Cs, it is a "contact" ion-pair complex, where the strong anion-cation interaction makes it a better electron acceptor than the "hydrated" ion-pair complexes. Remarkably, the electronic excitations in the visible part of the absorption spectrum of these complexes are predominantly solvent-to-POM charge transfer transitions (i.e. intermolecular CT). The ratio of the number of intermolecular charge transfer transitions to the number of O(2p)-to-W(5d) valence (i.e. intramolecular) transitions increases with the increasing atomic number of the alkali metals.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.