Abstract

Electrochemical uranium extraction from nuclear wastewater represents an emerging strategy for recycling uranium resources. However, in nuclear fuel production which generates the majority of uranium-containing nuclear wastewater, fluoride ion (F−) co-exists with uranyl (UO22+), resulting in the complex species of UO2Fx and thus decreasing extraction efficiency. Herein, we construct Tiδ+-PO43− ion pair extraction sites in Ti(OH)PO4 for efficient electrochemical uranium extraction in wastewater from nuclear fuel production. These sites selectively bind with UO2Fx through the combined Ti-F and multiple O-U-O bonds. In the uranium extraction, the uranium species undergo a crystalline transition from U3O7 to K3UO2F5. In real nuclear wastewater, the uranium is electrochemically extracted with a high efficiency of 99.6% and finally purified as uranium oxide powder, corresponding to an extraction capacity of 6829 mg g−1 without saturation. This work paves an efficient way for electrochemical uranium recycling in real wastewater of nuclear production.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.