Abstract

In this study, a novel, inexpensive, sensitive and selective analytical method that combines ion pair hollow fiber liquid–liquid–liquid microextraction (IP-HF-LLLME) with capillary electrophoresis-ultraviolet detection (CE-UV) was developed for the simultaneous determination of six thyroid hormones (including diiodothyronine (T2), 3,3,5-triiodo-l-thyronine (T3), 3,5,3,5-tetraiodolthyronine (T4), 3,3,5-triiodothyronine (rT3), monoiodotyrosine (MIT) and diiodotyrosine (DIT)) in human serum samples. By the addition of a low concentration of sodium dodecyl sulfate (SDS) into the donor phase as an ion pair reagent, octanol as the organic extraction solvent and 30mmol/L Na2CO3 as acceptor phase, six analytes with different polarity and water solubility were successfully extracted simultaneously using HF-LLLME. To the best of our knowledge, this is the first time that a liquid phase microextraction technique was proposed for the extraction of thyroid hormones in real samples. The CE separations were investigated in detail. When 20kV of voltage was applied, the six compounds were separated within 13min in 25mmol/L phosphate buffer (pH 2.15) containing 10% (v/v) acetonitrile and 0.5% (m/v) polyethylene glycol (PEG). Under the optimized conditions, enrichment factors (EFs) ranging from 183- to 366-fold were obtained and the limits of detection (at a signal-to-noise ratio of 3) were at sub μg/L level. The established IP-HF-LLLME-CE-UV method was successfully applied to simultaneous determination of thyroid hormones and relative compounds in human serum samples with good recoveries for the spiked samples.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call