Abstract
In this paper, we present an investigation of the gas-phase structural differences between cyclic and linear peptide ions by matrix-assisted laser desorption ionization-ion mobility-mass spectrometry. Specifically, data is shown for gramicidin S (cyclo-VOLFPVOLFP where phenylalanines are D rather than L-type amino acids and the O designates the non-standard amino acid ornithine) and five linear gramicidin S analogues. Results are interpreted as evidence for a β-sheet (or β-hairpin) conformational preference in both linear-protonated and sodiated-cyclic gramicidin S gas-phase peptides, and a preference for the protonated-cyclic peptide to adopt a collapsed, random coil-type conformation. A comparison with solution-phase circular dicrhoism measurements is performed, and structures similar to those observed in the gas phase appear to be favored in low-dielectric solvents such as 2,2,2-triflouroethanol. The utility of ion mobility-mass spectrometry (IM-MS) as a means of rapidly distinguishing between linear and cyclic peptide forms in also discussed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of the American Society for Mass Spectrometry
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.