Abstract
Near-surface damage created by Ar+ ion milling in InP and GaAs was characterized by capacitance-voltage, current-voltage, photoluminescence, ion channeling, and transmission electron microscopy. We find no evidence of amorphous layer formation in either material even for Ar+ ion energies of 800 eV. Low ion energies (200 eV) create thin (≤100 Å) damaged regions which can be removed by annealing at 500 °C. Higher ion energies (≥500 eV) create more thermally stable damaged layers which actually show higher backscattering yields after 500 °C annealing. Heating to 800 °C is required to restore the near-surface crystallinity, although a layer of extended defects forms in GaAs after such a treatment. No dislocations are observed in InP after this type of annealing. The electrical characteristics of both InP and GaAs after ion milling at ≥500 eV cannot be restored by annealing, and it is necessary to remove the damaged surface by wet chemical etching. For the same Ar+ ion energies the damaged layers are deeper for InP than for GaAs after 500 eV ion milling at 45° incidence angle. Removal of ∼485 and ∼650 Å from GaAs and InP, respectively, restores the initial current-voltage characteristics of simple Schottky diodes.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.