Abstract

AbstractIon milling, as a tool for “stirring” defects in HgCdTe by injecting high concentration of interstitial mercury atoms, was used for studying films grown by liquid phase epitaxy (LPE) on CdZnTe substrates. The films appeared to have very low residual donor concentration (∼1014 cm−3), yet, similar to the material grown by molecular beam epitaxy, contained Te-related neutral defects, which the milling activated electrically. It is shown that ion milling has a stronger effect on HgCdTe defect structure than thermal treatment, and yet eventually brings the material to an “equilibrium” state with defect concentration lower than that after low-temperature annealing.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.