Abstract
Organometal trihalide perovskites (OTPs) are emerging as very promising photovoltaic materials because the power conversion efficiency (PCE) of OTP solar cells quickly rises and now rivals with that of single crystal silicon solar cells after only five-years research. Their prospects to replace silicon photovoltaics to reduce the cost of renewable clean energy are boosted by the low-temperature solution processing as well as the very low-cost raw materials and relative insensitivity to defects. The flexibility, semitransparency, and vivid colors of perovskite solar cells are attractive for niche applications such as built-in photovoltaics and portable lightweight chargers. However, the low stability of current hybrid perovskite solar cells remains a serious issue to be solved before their broad application. Among all those factors that affect the stability of perovskite solar cells, ion migration in OTPs may be intrinsic and cannot be taken away by device encapsulation. The presence of ion migration has received broad attention after the report of photocurrent hysteresis in OTP based solar cells. As suggested by much direct and indirect experimental evidence, the ion migration is speculated to be the origin or an important contributing factor for many observed unusual phenomenon in OTP materials and devices, such as current-voltage hysteresis, switchable photovoltaic effect, giant dielectric constant, diminished transistor behavior at room temperature, photoinduced phase separation, photoinduced self-poling effect, and electrical-field driven reversible conversion between lead iodide (PbI2) and methylammonium lead triiodide (MAPbI3). Undoubtedly thorough insight into the ion-migration mechanism is highly desired for the development of OTP based devices to improve intrinsic stability in the dark and under illumination. In this Account, we critically review the recent progress in understanding the fundamental science on ion migration in OTP based solar cells. We look into both theoretical and experiment advances in answering these basic questions: Does ion migration occur and cause the photocurrent hysteresis in perovskite solar cells? What are the migrating ion species? How do ions migrate? How does ion migration impact the device efficiency and stability? How can ion migration be mitigated or eliminated? We also raise some questions that need to be understood and addressed in the future.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.