Abstract

RADIOHALOES associated with decay of several Po α emitters1,2 have been studied by optical microscopic techniques and more recently by mass spectrometric examination of the halo inclusion using ion microprobe techniques3,4. In such cases a large excess of 206Pb compared with 207Pb was found to be incompatible with the radiogenic decay of 238U and 235U, yet was explainable on the basis of polonium decay independent of uranium3. A straightforward attempt to account for the origin of these Po haloes by assuming that Po was incorporated into the halo inclusion at the time of host mineral crystallization meets with severe geological problems: the half-lives of the polonium isotopes (t1/2 =3 min for 218Po) are too short to permit anything but a rapid mineral crystallization, contrary to accepted theories of magmatic cooling rates.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.