Abstract

Salt ions are considered among the major determinants ruling protein folding, stability, and self-assembly in the context of amyloid-related diseases, protein drug development, and functional biomaterials. Here, we report that Hofmeister ions not only determine the rate constants of the aggregation reaction for human insulin and hen egg white lysozyme but also control the generation of a plethora of amyloid-like morphologies ranging from the nanoscale to the microscale. We anticipate that the latter is a result of a balance between colloidal and conformational stability combined with an ion-specific effect and highlight the importance of salt ions in controlling the biological functions of protein aggregates.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.