Abstract

Ion-irradiation of semiconductor surfaces has emerged as a promising approach to generate a variety of self-organized nanostructures. Furthermore, the combination of focused-ion-irradiation with molecular-beam epitaxy provides unprecedented design and control of surfaces and interfaces of hybrid materials at the atomic level during fabrication. In this review, we describe the directed self-assembly of nanostructure arrays ranging from islands to nanorods to 3-dimensional nanoparticle (NP) arrays. First, we discuss focused-ion-irradiation of III–V surfaces, which leads to preferential sputtering of group V species, followed by the formation of group III-rich metallic nanostructures. For continued irradiation beyond a threshold dose, the nanoparticle (NP) evolution is determined by the sputtering yield and the local ion beam angle of incidence, resulting in arrays of nanoparticles, nanorods, or nanoparticle chains. In addition to describing the formation of close-packed embedded Ga:GaAs nanocomposites using overgrowth of focused-ion-beam fabricated NP arrays, we discuss the surface plasmon resonances of NP arrays as well as the influence of both surface and buried NP arrays on the GaAs photoluminescence efficiency. Finally, we discuss the potential of “plasmonic crystals” for plasmon-enhanced optoelectronics.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.