Abstract

We have found that 0.8 MeV proton irradiation of crystalline H 2O–ice results in temperature dependent amorphization. The H 2O–ice's phase was determined using the near infrared spectrum from 1.0 μm (10,000 cm −1) to 2.5 μm (4000 cm −1). In crystalline H 2O–ice, the 1.65-μm (6061 cm −1) band is strong while it is nearly absent in the amorphous spectrum [Schmitt, B., Quirico, E., Trotta, F., Grundy, W.M., 1998. In: Schmitt, B., de Bergh, C., Festou, M. (Eds.), Solar System Ices. Kluwer Academic, Norwell, MA, 1998, pp. 199–240]. In this experiment, at low temperatures (9, 25, and 40 K), irradiation of crystalline H 2O–ice produced the amorphous H 2O–ice's spectrum. However, at 50 K, some crystalline absorptions persisted after irradiation and at 70 and 100 K the crystalline spectrum showed only slight changes after irradiation. Our results agree with previous H 2O–ice irradiation studies examining the crystalline peaks near 44 and 62 μm by Moore and Hudson [Moore, M.H., Hudson, R.L., 1992. Astrophys. J. 401, 353–360] and near 3.07 μm by Strazzulla et al. [Strazzulla, G., Baratta, G.A., Leto, G., Foti, G., 1992. Europhys. Lett. 18, 517–522] and by Leto and Baratta [Leto, G., Baratta, G.A., 2003. Astron. Astrophys. 397, 7–13]. We present a method of measuring band areas to quantify the phase and radiation dose of icy Solar System surfaces.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.