Abstract

Single crystal Fe thin films (∼250 nm) were grown on MgO substrates and irradiated with 2.0 MeV Fe+ ions at 10 and 50 dpa, and the defect evolution was studied using high resolution Transmission Electron Microscopy (HR-TEM) and Doppler Broadening Positron Annihilation Spectroscopy (PAS). It was shown that irradiation induced or exacerbated a thin oxide layer at the outer interface and produced substantial Fe/Mg mixing at the film/substrate interface, particularly for the higher dose. Modeling of the PAS data allowed interpretation of the defect types at different distances from the Fe surface, and included several types of MgO substrate damage and annihilation condition changes, indicative of damage due to ballistic effects of the Fe atoms as well as chemical changes due to implantation and subsequent diffusion. This detailed PAS study compared with TEM and energy dispersive spectroscopy (EDS) provides significant insight into depth-dependent defect creation. These results will be useful for predicting defect creation in Fe-based materials under irradiation conditions, for extension to neutron irradiated structural materials.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.