Abstract

Hydrogels provide a solution-mimicking environment for the interaction with living systems that make them desirable for various biomedical and technological applications. Because relevant biological processes in living tissues occur at the biomolecular scale, hydrogel nanopatterning can be leveraged to attain novel material properties and functionalities. However, the fabrication of high aspect ratio (HAR) nanostructures in hydrogels capable of self-standing in aqueous environments, with fine control of the size and shape distribution, remains challenging. Here, we report the synthesis of nanostructures with a HAR in bacterial cellulose (BC) hydrogel via directed plasma nanosynthesis using argon ions. The nanostructures in BC are reproducible, stable to sterilization, and liquid immersion. Using in-situ surface characterization and semi-empirical modeling, we discovered that pattern formation was linked to the formation of graphite-like clusters composed of a mixture of C-C and C=C bonds. Moreover, our model predicts that reactive species at the onset of the argon irradiation accelerate the bond breaking of weak bonds, contributing to the formation of an amorphous carbon layer and nanopattern growth.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.