Abstract

A highly versatile and scalable path to obtain buried magnetic nanostructures within alloy thin films, while maintaining a flat topography, is described. A magnetic pattern of nanoscale periodicity is generated over ∼cm2 areas by employing a B2 → A2 structural transition in the prototype Fe60Al40 thin alloy films. The phase transition was induced in the confined regions via ion-irradiation through self-assembled nanosphere masks. In this way, large area patterns of a hexagonal symmetry of ferromagnetic nanostructures embedded within a paramagnetic Fe60Al40 thin film are realized. The depth and lateral distribution of the induced magnetization was investigated by magnetometry and microscopy methods. Magnetic contrast imaging as well as simulations shows that the obtained magnetic structures are well defined, with the magnetic behavior tunable via the mask geometry.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.