Abstract

The present study explores the innocuous, biocompatible, and extremely competent molecularly imprinted chitosan/RTIL electrospun nanofibers having average diameter of 30nm for the expulsion of thorium (IV) ions from the mimicked effluent waste. The extended Flory-Huggins theory and three-dimensional molecular modeling have been effectively premeditated via Materials Studio software for enumerating the inter-miscibility and compatibility (Chi parameter (χ)=1.019, mixing energy (Emix)=0.603kcal/mol) of the chitosan/RTIL (1-butyl-3-methylimidazolium tetrafluoroborate). The maximum adsorption efficiency is found to be 90% at a neutral pH of 7, and a temperature of 298K within 120min. The adsorption process was extensively studied by two-parameter adsorption isotherms like Langmuir, Freundlich, Temkin, and Dubinin-Radushkevich (D-R) and three-parameter models like Redlich-Paterson and Sips isotherm. Pseudo-second-order kinetics model (R2=0.982) and Langmuir isotherm (R2=0.994) bestowed the best fitting on chitosan/RTIL nanofibers for the adsorption of Th (IV) ions. The thermodynamic study reveals the spontaneity and exothermic nature of the reaction. The experimental analysis conjoint with isotherm and kinetic models, and simulation study establish the applicability of chitosan/RTIL nanofibers for the expulsion of Th (IV) and other toxic metal ions from the effluents. Graphical abstract Ion-imprinted electrospun nanofiber for expulsion of thorium (IV) ion.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.