Abstract

The concentration of ions in plant cells and tissues is an essential factor in determining physiological function. In the present study, we established that concentration gradients of mobile ions exist in both xylem exudates and tissues within a barley (Hordeum vulgare) primary leaf. For K(+) and NO3 (-) , ion concentrations generally decreased from the leaf base to the tip in both xylem exudates and tissues. Ion gradients were also found for Pi and Cl(-) in the xylem. The hydathode strongly absorbed Pi and re-translocated it to the rest of the plant, whereas Cl(-) was extruded. The ion concentration gradients developed early during leaf growth, increased as the tissue aged and remained under both high and low transpiration conditions. Measurement of the expression profiles of Pi, K(+) and NO3 (-) transporters along the longitudinal axis of the leaf revealed that some transporters are more expressed at the hydathode, but for most transporters, there was no significant variation along the leaf. The mechanisms by which longitudinal ion gradients develop in leaves and their physiological functions are discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.