Abstract

Transport properties of high-energy-density plasmas are influenced by the ion collision rate. Traditionally, this rate involves the Coulomb logarithm, lnΛ. Typical values of lnΛ are ≈10-20 in kinetic theories where transport properties are dominated by weak-scattering events caused by long-range forces. The validity of these theories breaks down for strongly coupled plasmas, when lnΛ is of order one. We present measurements and simulations of collision data in strongly coupled plasmas when lnΛ is small. Experiments are carried out in the first dual-species ultracold neutral plasma (UNP), using Ca^{+} and Yb^{+} ions. We find strong collisional coupling between the different ion species in the bulk of the plasma. We simulate the plasma using a two-species fluid code that includes Coulomb logarithms derived from either a screened Coulomb potential or a the potential of mean force. We find generally good agreement between the experimental measurements and the simulations. With some improvements, the mixed Ca^{+} and Yb^{+} dual-species UNP will be a promising platform for testing theoretical expressions for lnΛ and collision cross-sections from kinetic theories through measurements of energy relaxation, stopping power, two-stream instabilities, and the evolution of sculpted distribution functions in an idealized environment in which the initial temperatures, densities, and charge states are accurately known.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.