Abstract

The effects of three additives—ammonium acetate, ammonium formate, and nicotinic acid—to the liquid chromatographic (LC) eluent and of the vaporizer temperature on the ion formation of N-methyl carbamate pesticides in thermospray (TSP) mass spectrometry was investigated by using filament- or discharge-assisted ionization. Nineteen carbamates and 12 of their known environmental degradation products were used as model compounds. The additives cause a strong reduction in the abundance of the characteristic fragment ions [M + H − CH 3NCO] + and [M − CH 3NCO] − for some of the carbamates. The addition of nicotinic acid reduces the quasimolecular ion intensity and, in most cases, produces nicotinic acid adduct ions. The addition of ammonium acetate or ammonium formate increases the intensity of the quasimolecular ion and in most cases produces a base peak for the ammonium adduct ion. The combination of a suppression of fragmentation and an enhancement of quasimolecular ion formation produces an overall gain in sensitivity. As to more specific effects, the addition of the ammonium salts reduces the intensity of M −• with the chlorinated carbamate barban and suppresses the formation of “odd” adduct ions in the TSP mass spectra of most other carbamates. Monitoring the intensity of the fragment and the quasimolecular ion signal as a function of the probe stem temperature, and the related probe tip temperature, proved to be an easy method to study the thermal degradation of the carbamates. This monitoring procedure showed that methiocarb and its sulfone already suffer from thermal degradation at a stem temperature of 90 °C and that these compounds will therefore present problems in quantitation with LC/TSP mass spectrometry.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.