Abstract

Recently performed inertial confinement fusion implosion experiments involving D-3He gas-filled microballoons have shown discrepancies between expected and measured nuclear fusion yields as the relative abundances of D and 3He are varied. The latter have been tentatively attributed to a sedimentation, or stratification phenomenon occurring in the target core. This work investigates the possibility of ion species sedimentation in a detailed way through multi-species ion-kinetic Vlasov-Fokker-Planck simulations of the implosion process. A noticeable amount of sedimentation is found to build up during the main shock propagation to the target center, but then disappears as the implosion proceeds. As a result, only the yield of the first burst of neutrons, associated with shock convergence, is appreciably modified, leaving the main neutron production phase during fuel compression and stagnation unaffected. The sedimentation of fuel ion species found, thus, cannot explain the experimental discrepancies.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call